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at Hierarchical Modular Networks

P. Kondratiuk and J.A. Hołyst
Faculty of Physics, Center of Excellence for Complex Systems Research, Warsaw University of Technology,

Koszykowa 75, PL-00-662 Warsaw, Poland

The model of community isolation was extended to the case when individuals are randomly placed at the
nodes of hierarchical modular networks. It was shown that the average number of blocked nodes (individuals)
increases in time as a power function, with the exponent depending on the network parameters. The distribution
of the time when the first isolated cluster appears is unimodal, non-gaussian. The developed analytical approach
is in a good agreement with the simulation data.
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1. Introduction

Recently, hierarchical systems have been attracting at-
tention of scientists working in the field of complex net-
works [1–5]. In fact, many real networks are hierarchi-
cally organized, e.g. the World Wide Web network, the
actor cooperation network, or the semantic web [1]. Dy-
namics at such networks can be qualitatively and quanti-
tatively different from that at regular lattices (see [2–4]).

The Ising model at networks of hierarchical topology
was studied by Komosa and Hołyst [2]. The analyzed
parameters were, among others, the magnetization, the
magnetic susceptibility, the critical temperature, and the
correlations of magnetization between different hierar-
chies. It was shown that the critical temperature is a
power function of the network size, as well as of the ratio
〈k2〉
〈k〉 , where k stands for a node degree.
Opinion formation in hierarchical organizations was

studied by Laguna et al. [3]. Agents, belonging to various
authority strata, try to influence each other’s opinions.
The probability that an opinion of an agent of a certain
authority prevails in the community, depends on the size
distribution of the authority strata. Phase diagrams can
be obtained, where each phase corresponds to a distinct
dominant stratum (or a sequence of the strata, with the
decreasing probability of prevailing).

Fashion phenomena at hierarchical networks were
studied by Galam and Vignes [4]. Interactions were im-
posed between social groups at different levels of hierar-
chy. The renormalization group approach was used to
find the optimal investment level of the producer and to
assess the influence of counterfeits on the probability of
the new product success.

One of the fundamental topics in social dynamics
are conflict situations and many different sociophysical
approaches [6–8] or prisoner’s dilemma–type games [9]
have been proposed. Most such models concentrate on
the problem of influence of neighbors on an individual
agent’s internal variable [10]. Recently a qualitatively
different model has been introduced by Sienkiewicz and
Hołyst [11]. The key idea behind that model is that isola-

tion of communities makes them suffer and even extinct
— a phenomenon often observed in ecology [12] and so-
ciology [13–14].

The model of communities isolation has already been
studied for chains, hypercubic, random and scale-free
networks [11, 15]. In this paper we extend it to the hier-
archical networks proposed at [1].

2. Hierarchical networks

The model of hierarchical networks was proposed by
Ravasz and Barabási [1] and extended by Suchecki and
Hołyst [5]. Such networks are characterized by three pa-
rameters, determining their structure:

• The degree of hierarchy h ∈ N ∪ {0}
• The distribution PM (m), where m ∈ N, determin-
ing the number of nodes at each level of hierarchy
(in particular, the size of the cliques at the lowest
level of hierarchy is equal to m + 1)

• The parameter determining the density of edges p ∈
[0, 1]

Two models (referred to as the P1 and PD models) were
analyzed, which differ in the density of edges. Each net-
work has a central node, referred to as the center of hier-
archy. A network of hierarchy h = 0 is a complete graph
of size m+1 (m is a random number, chosen with proba-
bility PM (m)). Here, the center of hierarchy, due to the
symmetry, can be an arbitrary node. In order to con-
struct a network of hierarchy h > 0, one has to construct
m + 1 subnetworks of hierarchy h− 1 and choose one of
them as central. Its center of hierarchy, node v, becomes
the center of hierarchy of the whole network. Afterwards,
new connections (edges) are created: for each node w of
the m remaining subnetworks a connection (edge) (v, w)
is created with probability p (in the case of the P1 model)
or ph (in the case of the PD model). Sample networks
created this way are shown in Fig. 1. Let us stress that
the subnetworks do not have to be connected, especially
if p is small.
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Fig. 1. Sample P1 networks with parameters
PM (m) = Unif(2, 4), p = 0.5, and with different
degrees of hierarchy: (a) h = 0, (b) h = 1, (c) h = 2,
(d) h = 3.

Some basic properties of such networks can be con-
cluded from the construction algorithm:

• For h ∈ {0, 1}, as well as for p ∈ {0, 1}, the P1 and
PD models are equivalent.

• For p = 0, the network consists of isolated cliques
of size m + 1 (where m is a random variable).

• For PM (m′) = δm′,m the number of nodes (vertices)
of the network equals N = (m + 1)h+1.

Periodic oscillations in the degree distribution of such
networks can be observed in the log-log scale. The period,
the amplitude and the shape of the peaks depend on the
network parameters [5].

In this paper only the case of PM (m′) = δm′,m (m =
const) was considered, which corresponds to the original
Ravasz and Barabási model [1].

3. Basic isolation model

The model of communities isolation was proposed by
Sienkiewicz and Hołyst [11]. The rules are similar to
those of the game of Go. A number of communities com-
pete with each other, settling nodes of a network. In each
step a random empty node is chosen. It is then settled
by a member of a randomly chosen community. A clus-
ter of nodes occupied by one community becomes blocked
when it gets surrounded by another community. The sur-
rounded nodes are no more active in the game, i.e. they
can not take part in surrounding other communities.

The case of communities competing at a chain was an-
alyzed in [11]. Two functions describing the evolution
were studied: the average number of blocked nodes over
time and the mean critical time, i.e. the moment, when
the first blocked cluster appears. In [15] the influence

Fig. 2. The average number of blocked nodes, Z(t), for
various networks of the P1 model. Symbols correspond
to the simulated data. Lines — analytical approxima-
tions (Eqs. (4.4), (4.7), and (4.9)). Left side — linear
scale, right side — log-log scale.

Fig. 3. The average number of blocked nodes, Z(t), for
various networks of the PD model. Symbols correspond
to the simulated data. Lines — analytical approxima-
tions (Eqs. (4.4), (4.7), and (4.9)). Left side — linear
scale, right side — log-log scale.
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of external bias was considered, i.e. the settling rates of
competing communities are different.

In this paper the case of two competing communities
at P1 and PD hierarchical networks is considered. Two
parameters are analyzed: the average number of blocked
nodes Z(t) and the critical time distribution Pr(tc).

4. Number of blocked nodes over time

4.1. Case p = 0

For p = 0, the P1 and PD models are equivalent. The
network consists of N/(m + 1) isolated cliques of size
m+1. In such case the average number of blocked nodes
Z(t) evolves the following way:{

Z(0) = 0
Z(t + 1) = Z(t) +

∑m
i=1 ipi,

(4.1)

where pi denotes the probability that in the (t+1)th step
i nodes will be blocked,

pi =
(

t

2N

)m (
m

i

)
. (4.2)

After short algebra we obtain{
Z(0) = 0
Z(t + 1) = Z(t) + m

2

(
t
N

)m
.

(4.3)

The solution of this recursive equation is a (m + 1)th
degree polynomial, which can be approximated by sub-
stituting the sum with the integral:

Z(t) =
t−1∑

i=0

m

2

(
i

N

)m

≈
∫ t

0

m

2

( x

N

)m

dx

=
m

m + 1
tm+1

2Nm
. (4.4)

As one can see, Z(t) is a power function. The exponent
β depends only on the m parameter, β = m + 1.

4.2. Case p = 1

In this case the P1 and PD models are also equivalent.
For the networks of hierarchy h = 1:

Z(1)(t) = ρ0

(
ρm
1

m

2
+ mρm+1

1

m + 1
2

)

=
1
2
mρ0ρ

m
1 (1 + (m + 1)ρ1), (4.5)

where ρi denotes the reduced density :

ρi = ρi(t) ≡
{

0 for t < i
t−i
N−i for t ≥ i

(4.6)

For the networks of higher hierarchies, h ≥ 1, a recur-
sive equation approximating Z(h)(t) can be derived. The
idea behind the formulas is as follows: a clique can only
be blocked if all the nodes of higher hierarchies neighbor-
ing with it are filled. Therefore Z(h)(t) = 0 if the center
of hierarchy of the network (which neighbors with all the
other nodes) is empty. In the opposite case, Z(h)(t) de-
pends on Z(h−1)(t), which describes each of the m + 1
subnetworks.





Z
(1)
i (t) = 1

2mρiρ
m
i+1 (1 + (m + 1)ρi+1)

Z
(h)
i (t) = Z

(h−1)
i (t) + 1

2mρiZ
(h−1)
i+1 (t)

+ 1
4ρiρi+1ρ

(m+1)h−1
i+2

(
(m + 1)h + 1

)

Z(h)(t) ≡ Z
(h)
0 (t)

(4.7)
This equation can only be solved numerically. The solu-
tions are presented in Figs. 2 and 3. It can be noticed
that within a long period of time t, Z(h) can be approx-
imated by a power function

Z(h)(t) ∝ tβ , (4.8)
with reasonable accuracy. The β exponents are higher
than in the case of p = 0. In fact, they are close to
m + 4.

4.3. General case

An analytical approximation of Z(h)(t) for networks
with higher hierarchies (h > 1), if the parameter p is
different from zero and one, is far more difficult. Instead
of searching for such a formula, an alternative approach
was chosen. It was assumed that Z(h)(t) can be estimated
from the proportion

log Z
(h)
p=0(t)− log Z(h)(t)

log Z(h)(t)− log Z
(h)
p=1(t)

≈ f(p, h)
1− f(p, h)

, (4.9)

where f(p, h) ∈ [0, 1] should be an increasing function of
p which, while not being too complicated, would give a
reasonable approximation for the widest possible ranges
of p and h. It turned out that in the case of the P1 model,
choosing f(p, h) = p results in a good agreement of the
Z(h)(t) function with the simulation data. For the PD
model, f(p, h) = p

h
2 is a good choice.

5. Critical time distribution

5.1. Case p = 0

As it was previously mentioned, in the case of p = 0,
the network consists of N/(m + 1) = (m + 1)h isolated
cliques of m+1 nodes. In order to find the distribution of
the critical time (i.e., the moment when the first blocked
cluster appears), one has to consider the probability that
at time t there are no blocked nodes yet. It means that
at time t the only completely filled cliques are those filled
with members of one community, which leads to the for-
mula

Pr(tc > t) =

(
1− α

(
t

N

)m+1
) N

m+1

, (5.1)

where α ≡ 1− 2−m. The cumulative critical time distri-
bution can be immediately obtained as

Pr(tc ≤ t) = 1−
(

1− α

(
t

N

)m+1
) N

m+1

, (5.2)

as well as the critical time distribution in the approxima-
tion of continuous time:

Pr(tc = t) = Pr(tc ≤ t)− Pr(tc ≤ t− 1)
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≈ d
dt

Pr(tc ≤ t)

= α

(
1− α

(
t

N

)m+1
) N

m+1−1 (
t

N

)m

(5.3)

The mean critical time can be also calculated analyti-
cally:

〈tc〉 =
∫ N

0

tPr(tc = t)dt ≈
∫ N

0

t
d

dt
Pr(tc ≤ t)dt

=
N

m + 1
α−

1
m+1

(
B

(
N

m + 1
+ 1,

1
m + 1

)

− B

(
2−m;

N

m + 1
+ 1,

1
m + 1

))
, (5.4)

where B(a, b) ≡ ∫ 1

0
ta−1(1−t)b−1 dt (the Euler beta func-

tion) and B(x; a, b) ≡ ∫ x

0
ta−1(1 − t)b−1 dt (the incom-

plete Euler beta function).
5.2. Case p = 1

For the networks of hierarchy h = 0

Pr(tc > t) = 1− α

(
t

N

)m+1

= 1− αρm+1
0 . (5.5)

For the networks of hierarchy h = 1
Pr(tc > t) = 1− ρ0 + ρ0(1− ρm

1 )
(
1− αρm+1

1

)m
.

(5.6)
For the networks with a higher degree of hierarchy, h ≥
0, a recursive formula for the cumulative critical time
distribution can be expressed as




F
(0)
i (t) = αρm+1

i

F
(h)
i (t) = ρi − ρi(1− ρm

i+1)
(

h−1∏
d=0

(1− F
(d)
i+1(t))

)m

Pr(h)(tc ≤ t) ≡ F
(h)
0 (t).

(5.7)
The mean critical time can be obtained by numerical

integration of Pr(h)(tc ≤ t):

〈tc〉 = N −
∫ N

0

Pr(h)(tc ≤ t)dt. (5.8)

6. Discussion and conclusions

6.1. Number of blocked nodes Z(t)
In all cases the function Z(t), defined as the average

number of blocked nodes at time t, can be approximated
with high accuracy by the power function

Z(t) ∝ tβ . (6.1)
The β exponent depends on the parameters of the net-
work. For d-dimensional hypercubic networks (including
the 1-dimensional ones, i.e. chains) β = 2d − 1. For
modular hierarchical networks β depends mainly on the
m and p parameters, i.e. on the sizes of the cliques at
the lowest hierarchy level, and on the density of the inter-
clique connections. The dependence on the degree of hi-
erarchy h (and on the network size) is weak. It can be
explained by the fact that increasing the degree of hier-
archy h is a process similar to system rescaling. Thus,

Fig. 4. Critical time distribution for the networks of
hierarchy h = 2 (left) and h = 3 (right), with p = 0
(top) and p = 1 (bottom). Symbols — simulated data,
smooth lines — analytical approximations (Eqs. (5.3)
and (5.7)).

Fig. 5. Mean critical time for various networks. Sym-
bols correspond to the simulated data, lines — to the
analytical approximations (Eqs. (5.4) and (5.8)).

one can assume that
Z(h+1)(ρ) ≈ (m + 1)Z(h)(ρ) = (m + 1)Cρβ

= C ′tβ . (6.2)
For p = 0, the β parameter can be found analytically:

β = m + 1. The results agree with the simulated data.
Increasing the density of connections (the p parameter)
leads to the increase of β, up to approximately m+ 4 for
p = 1.

There is an important distinction in the way Z(t) was
approximated for hypercubic and hierarchical networks.
For hypercubic networks, the number of isolated nodes
was calculated using the following approximation: all the
blocked nodes were blocked alone, i.e. they do not neigh-
bor with other blocked nodes (of the same community).
Although this approximation might seem coarse, the re-
sulting analytical predictions turned out to agree quite
well with the simulated data [11, 15]. For the modular



Model of Communities Isolation at Hierarchical Modular Networks B-71

hierarchical networks, such an approximation would not
be reasonable. As at the lowest level of hierarchy such
networks consist of the cliques of m + 1 nodes, the most
probable are the situations when (m + 1)/2 nodes are
simultaneously blocked.

6.2. Critical time tc

The second analyzed parameter was the critical time
tc, i.e. the moment, when the first isolated cluster ap-
pears. It is a random variable. The critical time distri-
bution Pr(tc) was studied, as well as the mean critical
time 〈tc〉. More precisely, a critical density (or a critical
relative time)

ρc ≡ tc
N

(6.3)

was often considered instead, so that networks of differ-
ent sizes could be easily compared.

The Pr(ρc) distribution is always unimodal. The mode
(i.e., argmax Pr(ρc)) decreases with the increase of h,
and the standard deviation σ(ρc) decreases with m.

For p = 0, it was possible to find the analytical for-
mulas for both Pr(tc) and 〈tc〉. The distribution Pr(tc)
is a polynomial of degree m(m + 1)((m + 1)h − 1) (Eq.
(5.3)), and the average 〈tc〉 is a scaled difference of two
Euler beta functions (Eq. (5.4)). The average critical
density 〈ρc〉 decreases with h and for a fixed h it reaches
the minimum for m ≈ 2 (Fig. 5).

For p = 1, the distribution Pr(ρc) reaches a constant,
non-zero value for ρc ∈ [1− ε, 1] (e.g., for h ≤ 3, ε ≈ 0.1),
which means that processes when the blocked clusters
first appear at the very end of the evolution are not un-
likely.

The values of 〈ρc〉 can be compared with the ones ob-
tained for hypercubic networks. Similar trends can be
observed in hypercubic and hierarchical networks: 〈ρc〉
decreases with the network size N and increases with the
average degree. However, for the modular hierarchical
networks the dependence of 〈ρc〉 on the average degree
(which equals m for p = 0 and rises with p) is very weak
compared to hypercubic networks. Typical values of 〈ρc〉
for hierarchical networks correspond to the ones obtained
for two- or three-dimensional networks, even for m À 3.
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